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Generation and reactions of 2,3-dilithio-N-methylindole.
Synthesis of 2,3-disubstituted indoles
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Abstract—Generation of 2,3-dilithio-N-methylindole (7) from 2,3-diiodo-N-methylindole (6) and subsequent reaction with various
electrophiles (NH4Cl, DMF, ClCO2Me, CO2, phthalic anhydride) affords the corresponding 2,3-disubstituted indoles in good to
excellent yields (41–99%). © 2001 Elsevier Science Ltd. All rights reserved.

The metallation and subsequent reaction of heterocy-
cles is a powerful tactic in synthesis,1 and the genera-
tion and utility of lithioindoles has been used by many
investigators to elaborate indoles.2,3 Several years ago
we attempted to generate 2,3-dilithio-N-(phenylsul-
fonyl)indole (2).4 Surprisingly, this species underwent
facile indole ring fragmentation at temperatures down
to and even below −100°C, to afford the stable lithium
2-(N-lithiophenylsulfonamido)phenylacetylide (3). Sub-
sequent trapping of 3 with electrophiles (aq. NH4Cl,
TMSCl, ClCO2Et) afforded the corresponding products
in good yields (66–82%).4 Products with an intact
indole ring were obtained in low yield (<20%).

We now report that the N-methyl analogue of 2 is
stable at low temperatures and can be trapped with
electrophiles to give 2,3-disubstituted indoles. This
chemistry is summarized in Scheme 1. We synthesized
2,3-diiodo-N-methylindole (6) in two steps from indole
(4). Thus, the Bergman procedure5 gave 2-iodoindole
(5)6 in 90% yield. Treatment of 5 with I2/KOH/DMF
followed by methyl iodide in the presence of tetra-n-
butylammonium hydrogen sulfate gave 67,8 in 91%
yield. The dilithio species 7 was generated with excess
tert-butyllithium (5–10 equiv.) at −78°C (THF, 20 min).
Quenching the resulting bright yellow solution at −78°C

with saturated aqueous NH4Cl afforded N-methylin-
dole (8)9 in 99% yield. Evidence for the formation of
dilithioindole 7, rather than monolithiated iodinated
intermediates, was revealed by direct injection of the
lithiated reaction mixture into a gas chromatograph.
This showed the presence of only 8 and no iodinated
N-methylindoles. Quenching dilithioindole 7 with DMF
(10 equiv.) gave 2,3-diformyl-N-methylindole (9)10 in
82% yield. A similar reaction with methyl chlorofor-
mate gave 2,3-bis(methoxycarbonyl)-N-methylindole
(10)12 in 75% yield. Likewise, reaction of 7 with gaseous
CO2 gave N-methyl-2,3-indole dicarboxylic acid (11)14

in 66% yield.

In view of our long interest in employing lithiated
indoles as a synthetic route to the anticancer ellipticine
alkaloid family and related benzo[b ]carbazoles,3,16 we
quenched dilithioindole 7 with phthalic anhydride. This
afforded 5-methyl-5H-benzo[b ]carbazole-6,11-dione
(12)17 in 41% yield. Work is currently underway to
adapt this latter reaction to a synthesis of pyridocarba-
zolequinones and pyridocarbazoles such as ellipticine.

Unfortunately, attempts to achieve bis-electrophilic
reactions with TMSCl and methyl iodide have led to
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Scheme 1.

mixtures of products. For example, reaction of 7 with
excess methyl iodide afforded a 60:40 (GC–MS) mix-
ture of 1,2,3-trimethylindole and a dimethylindole.
Reaction of 7 with a,a%-dibromo-o-xylene and 1,4-
dibromobutane led to complex reaction mixtures and
the apparent formation of an unidentified indole dimer.

In conclusion, the substitution of the electron-donating
methyl group for the electron-withdrawing phenylsul-
fonyl group prevents indole ring fragmentation of 2,3-
dilithioindole and allows for bis-electrophilic reactions
of this novel species.19,20 Finally, it should be noted that
Winter has described the synthesis of a stable dimeric
2,3-dialuminated indole.21
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